Namespaces & String Type

Dr. Mohammed M Abozahhad

Reversing Diagonal (Home Work)

matrix [0] [1] [2] (3]

o Before:
- e
- N -
L K -
- e

matrix [0] [1] [2] [3]

o After:

C++ Programming: From Pr

Reversing Diagonal (continued)

To reverse both the diagonals:

//Reverse the main diagonal

for (row = 0; row < NUMBER OF ROWS / 2; row++)
{

temp = matrix[row][row];

matrix[row][row] =

matrix[NUMBER OF ROWS - 1 - row][NUMBER OF ROWS - 1 - row];
matrlx[NUMEER OF ROWS - 1 - row][NUMBER OF ROWS - 1 - row]
= temp;

//Reverse the opposite diagonal
for (row = 0; row < NUMBER OF ROWS / 2; row++)
{
temp = matrix[row][NUMBER OF ROWS - 1 - row];
matrix[row] [NUMBER OF ROWS - 1 - row]
matrlx[NUMBER OF ROWS 1 - row][row];
matrix[NUMBER OF ROWS - 1 - row][row] = temp;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 3

Objectives

* |earn about the namespace mechanism

« EXxplore the string data type, and learn how
to use the various string functions to

manipulate strings

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Namespaces

 ANSI/ISO standard C++ was officially
approved in July 1998

« Most of the recent compilers are also
compatible with ANSI/ISO standard C++

* For the most part, standard C++ and
ANSI/ISO standard C++ are the same

— However, ANSI/ISO Standard C++ has some
features not available in Standard C++

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Namespaces (continued)

* Global identifiers in a header file used in a
program become global in the program
— Syntax error occurs if an identifier in a

program has the same name as a global
identifier in the header file

« Same problem can occur with third-party
libraries

— Common solution: third-party vendors begin
their global identifiers with _ (underscore)

« Do not begin identifiers in your program with _

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Namespaces (continued)

 ANSI/ISO Standard C++ attempts to solve
this problem with the namespace mechanism

¢ Syntax:

namespace namespace_name

{
members

}

where a member is usually a variable
declaration, a named constant, a function, or
another namespace

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Namespaces (continued)

EXAMPLE 8-8

The statement:

namespace globalType

{
const int N = 10;
const double RATE = 7.50;
int count = 0;
void printResult();
}

defines globalType to be a namespace with four members: named constants N and
RATE, the variable count, and the function printResult.

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 8

Namespaces (continued)

* The scope of a namespace member is local
to the namespace

 Ways a namespace member can be
accessed outside the namespace:

namespace name::identifier

using namespace namespace name;

using namespace name: :identifier;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Accessing a namespace Member

« Examples:
globalType: :RATE
globalType: :printResult () ;

« After the using statement, it is not necessary
to precede the namespace name: : before
the namespace member

— Unless a namespace member and a global
Identifier or a block identifier have same name

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 10

Accessing a namespace Member

 Here we can see that more than one variables are being used without
reporting any error because they are declared in the different
namespaces and scopes.

» #include <iostream>
e using namespace std,
* namespace first {

. int val = 500; // Variable created inside namespace

©)

« intval = 100; // Global variable

* int main() {

. int val = 200; // Local variable

. /[These variables can be accessed from outside the namespace
using the scope operator ::

. cout << first::val <<"\n"; // 500

. cout << ::val << '\n'; // 100

. cout << val <<"'\n"; // 200

11
. return 0; 1}

string Type

* To use the data type string, the program
must include the header file string

e The statement:

string name = "William Jacob";

declares name to be a string variable and
also initializes name to "william Jacob"

— The first character, 'W', is in position O
— The second character, 'i"', Is in position 1
— name IS capable of storing any size string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

12

string Type (continued)

« Binary operator + and the array subscript
operator [], have been defined for the data
type string

— + performs the string concatenation operation

« Example:

strl = "Sunny";

str2 = strl + " Day";
stores "Sunny Day" INtO str2
- [] to get a specific character from the string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 13

Additional st ring Operations

e length

e s1ze
e find
e substr
e swap

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

14

length Function

« Returns the number of characters currently in
the string

¢ Syntax:

strVar.length()

where strVar Is variable of the type string
« length returns an unsigned integer

* The value returned can be stored in an integer
variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 15

string firstName;
string name;
string str;

firstName = "Elizabeth";

name = firstName + " Jones";

str = "It is sunny.";

Statement Effect
cout << firstName.length() << endl; Qutputs 9
cout << name.length() << endl; Outputs 15
cout << str.length() << endl; Qutputs 12

string::size type len;

Statement Effect
len = firstName.length(); The value of len is 9
len = name.length(); The value of len is 15

len =str.length(); The value of len i1s 12

size Function

 size IS the same as the function 1ength
— Both functions return the same value

¢ Syntax:
strVar.size ()

where strVar Is variable of the type string

* As In the case of the function 1length, the
function size has no arguments

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

17

fi1ind Function

Searches a string for the first occurrence of a
particular substring

Returns an unsigned integer value of type
string::size type

— Or string: :npos If unsuccessful
Syntax:

strVar.find (strExp) strVar.find (strExp, pos)

— strExp can be a string or a character

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 18

find Function (continued)

string sentence;
string str;
string::size_type position;

sentence = "Outside it is cloudy and warm.";
str = "cloudy";

Statement Effect

cout << sentence.find("is") << endl; Outputs 11

cout << sentence.find("and") << endl; Outputs 21

cout << sentence.find('s') << endl; Outputs 3

cout << sentence.find('o') << endl; Outputs 16

cout << sentence.find(str) << endl; Outputs 14

cout << sentence.find("the") << endl; Outputs the value of string: :npos
cout << sentence.find('i', 6) << endl; Outputs 8

position = sentence.find("warm") ; Assigns 25 to position

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 19

substr Function

« Returns a particular substring of a string
¢ Syntax:
strVar.substr (exprl, expr2)

exprl and expr2 are expressions evaluating to
unsigned integers

— exprl specifies a position within the string
(starting position of the substring)

- expr2 specifies the length of the substring to
be returned

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 20

substr Function (continued)

string sentence;
string str;

sentence = "It is cloudy and warm.";

Statement Effect

cout << sentence.substr (0, 5) << endl; Outputs: It is

cout << sentence.substr (6, 6) << endl; Outputs: cloudy

cout << sentence.substr(6, 16) << endl; Outputs: cloudy and warm.
cout << sentence.substr (17, 10) << endl; Outputs: warm.

cout << sentence.substr(3, 6) << endl; Outputs: is clo

str = sentence.substr (0, 8); str = "It is cl1"

str = sentence.substr (2, 10); str = " is cloudy"

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 21

swap Function

Interchanges contents of two string variables
Syntax:

strVarl.swap(strVar2);

where strvarl and strvVar2 are string

variables
* Suppose you have the following statements:
string strl = "Warm";
string str2 = "Cold";

After strl.swap (str2); executes, the value of
strl IS "Cold" and the value of str2 IS "wWar"

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 22

