

Namespaces & String Type

Dr. Mohammed M Abozahhad

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 2

Reversing Diagonal (Home Work)

• Before:

• After:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 3

Reversing Diagonal (continued)

• To reverse both the diagonals:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 4

Objectives

• Learn about the namespace mechanism

• Explore the string data type, and learn how

to use the various string functions to

manipulate strings

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 5

Namespaces

• ANSI/ISO standard C++ was officially

approved in July 1998

• Most of the recent compilers are also

compatible with ANSI/ISO standard C++

• For the most part, standard C++ and

ANSI/ISO standard C++ are the same

− However, ANSI/ISO Standard C++ has some

features not available in Standard C++

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 6

Namespaces (continued)

• Global identifiers in a header file used in a

program become global in the program

− Syntax error occurs if an identifier in a

program has the same name as a global

identifier in the header file

• Same problem can occur with third-party

libraries

− Common solution: third-party vendors begin

their global identifiers with _ (underscore)

• Do not begin identifiers in your program with _

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 7

Namespaces (continued)

• ANSI/ISO Standard C++ attempts to solve

this problem with the namespace mechanism

• Syntax:

 where a member is usually a variable

declaration, a named constant, a function, or

another namespace

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 8

Namespaces (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 9

Namespaces (continued)

• The scope of a namespace member is local

to the namespace

• Ways a namespace member can be

accessed outside the namespace:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 10

Accessing a namespace Member

• Examples:

 globalType::RATE

 globalType::printResult();

• After the using statement, it is not necessary

to precede the namespace_name:: before

the namespace member

− Unless a namespace member and a global

identifier or a block identifier have same name

11

Accessing a namespace Member

• Here we can see that more than one variables are being used without

reporting any error because they are declared in the different

namespaces and scopes.

• #include <iostream>

• using namespace std;

• namespace first {

• int val = 500; // Variable created inside namespace

• }

• int val = 100; // Global variable

• int main() {

• int val = 200; // Local variable

• // These variables can be accessed from outside the namespace

using the scope operator ::

• cout << first::val << '\n'; // 500

• cout << ::val << '\n'; // 100

• cout << val << '\n'; // 200

• return 0; }

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 12

string Type

• To use the data type string, the program

must include the header file string

• The statement:

 string name = "William Jacob";

 declares name to be a string variable and
also initializes name to "William Jacob"

− The first character, 'W', is in position 0

− The second character, 'i', is in position 1

− name is capable of storing any size string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 13

string Type (continued)

• Binary operator + and the array subscript

operator [], have been defined for the data

type string

− + performs the string concatenation operation

• Example:

 str1 = "Sunny";

 str2 = str1 + " Day";

 stores "Sunny Day" into str2

- [] to get a specific character from the string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 14

Additional string Operations

• length

• size

• find

• substr

• swap

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 15

length Function

• Returns the number of characters currently in

the string

• Syntax:

 where strVar is variable of the type string

• length returns an unsigned integer

• The value returned can be stored in an integer

variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 17

size Function

• size is the same as the function length

− Both functions return the same value

• Syntax:

where strVar is variable of the type string

• As in the case of the function length, the

function size has no arguments

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 18

find Function

• Searches a string for the first occurrence of a

particular substring

• Returns an unsigned integer value of type
string::size_type

− Or string::npos if unsuccessful

• Syntax:

− strExp can be a string or a character

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 19

find Function (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 20

substr Function

• Returns a particular substring of a string

• Syntax:

expr1 and expr2 are expressions evaluating to

unsigned integers

− expr1 specifies a position within the string

(starting position of the substring)

− expr2 specifies the length of the substring to

be returned

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 21

substr Function (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 22

swap Function

• Interchanges contents of two string variables

• Syntax:

 where strVar1 and strVar2 are string

variables

• Suppose you have the following statements:

 string str1 = "Warm";

 string str2 = "Cold";

• After str1.swap(str2); executes, the value of

str1 is "Cold" and the value of str2 is "War"

